No.	Question	Answer	
1	What is conservation of mass?	No atoms are lost or made during a chemical reaction - mass of the reactant = the mass of the products	
2	Why can it appear that mass is not	If an experiment is completed in an open system, then gases can either enter or leave the system	
	conserved?		
3	Give an example of a reaction where mass	When a metal reacts with oxygen (gas) in an unsealed container, the mass of the container increases	
	may appear to increase	Metal $_{(s)}$ + oxygen $_{(g)}$ \rightarrow metal oxide $_{(s)}$	
4	Give an example of a reaction where mass	When a metal carbonate thermally decomposes, carbon dioxide (gas) is given off	
	may appear to increase	Metal carbonate $_{(s)}$ \rightarrow metal oxide $_{(s)}$ + carbon dioxide $_{(g)}$	
5	What is a word equation?	A way of using the names of substances to show what is happening during a chemical reaction	
6	What are the products in a chemical	The new substances formed in a chemical reaction	
	reaction?		
7	What are the reactants in a chemical	The substances required for a chemical reaction	
	reaction?		
8	Why must all symbol equations be balanced?	All atoms must be conserved	
	What does a balanced symbol equation	The number of moles of each compound that takes part in a chemical reaction	
	show?		
9	How do we know a symbol equation is	There is the same number of each atom on both sides of the arrow	
	balanced?		
10	What do the big numbers before the	The number of units (or moles) of that molecule	
	molecules in a symbol equation represent?		
11	Why must equations be balanced?	Because atoms cannot be created or destroyed	
12	What is relative formula mass?	The sum of the relative atomic masses of the atoms in the numbers shown in the formula (e.g. $O_2 = 16 + 16 =$	
		32)	
13	What is the symbol for relative formula	Mr	
	mass?		
14H	What is the definition molar mass? (Higher	The mass of one mole of a substance in grams	
	tier only)		
15H	What is the symbol for the unit mole?	Mol	
	(Higher tier only)		
16H	What is the definition of Avogadro's	The number of particles (atoms, molecules or ions) in one mole of a given substance	
	constant? (Higher tier only)		
17H	What number is Avogadro's constant?	6.02 x 10 ²³ per mole	
	(Higher tier only)		
18H	How many particles are there in 1 mole of	6.02 x 10 ²³	
	any substance? (Higher tier only)		

19H	What is the formula for calculating the	number of moles = <u>actual mass (g)</u>			
	number of moles? (Higher tier only)	Mr			
20H	How can chemical equations be interpreted	This shows us that one mole of magnesium reacts with two moles of hydrochloric acid to produce one mole			
	in terms of moles? (Higher tier only) E.g.	of magnes	sium chloride and one mole of hydrogen ga	as	
	Mg + 2HCl \rightarrow MgCl ₂ + H ₂				
21H	What is a limiting reactant? (Higher tier only)	If one reactant gets completely used up in a reaction before the rest, then the reaction will stop. This is the			
		limiting re	limiting reactant		
22H	What does it mean when a reactant is in	There is reactant left over (unreacted) at the end of the chemical reaction			
	'excess'? (Higher tier only)				
23H	Why might we add reactants to 'excess'?	To ensure that all of the other reactant is used up			
	(Higher tier only)				
24H	How can we calculate the masses of	STEP 1 :	Balance the equation:	2NaOH + Cl ₂ \rightarrow NaOCl + NaCl + H ₂ O	
	reactants and products from a balanced				
	symbol equation? (Higher tier only)	STEP 2 :	Work out the M _r of the substances	NaOH = 40	
			involved in the question:	Cl ₂ = 71	
	e.g.				
	If we have a solution containing 100g of	STEP 3 :	Calculate the number of moles of the	100g of sodium hydroxide is 100 ÷ 40 = 2.5 moles	
	sodium hydroxide (NaOH), how much		mass in the question: (Moles = mass /		
	chlorine gas (Cl ₂) should we pass through the		M _r)		
	solution to make bleach?			The chemical equation tells us that for every 2 moles of	
		STEP 4:	Look at the ratio of moles in the	sodium hydroxide we need one mole of chlorine	
		question:		So we need 2.5 \div 2 = 1.25 moles of chlorine	
				1.25 x 71g = 88.75g of chlorine to react with 100g of	
				sodium hydroxide	
		STEP 5 :	Calculate the mass of 1.25 moles of		
			chlorine:		

25H	How can we balance equations using reacting masses? (Higher tier only)	STEP 1 :	Work out M_r for each of the substances in the reaction	ZnO: 65 + 16 = 81, C : 12, CO ₂	: 12 + (2 x 16) = 44, Zn : 65
	e.g 8.1g of zinc oxide (ZnO) reacts completely with 0.60g of carbon to form 2.2g of carbon dioxide and 6.5g of zinc. Write a balanced symbol equation for this reaction.	STEP 2 :	Divide the mass of each substance by its M _r to calculate how many moles of each substance reacted or were produced	ZnO: 8.1 / 81 = 0.10 mol, C: 0.60 / 12 = 0.050 mol,	CO ₂ : 2.2 / 44 = 0.050 mol Zn: 6.5 / 65 = 0.10 mol
	(C = 12), (O = 16), (Zn = 65)	STEP 3 :	Divide by the smallest number of moles (0.050)	ZnO: 0.10 / 0.050 = 2.0, C: 0.050 / 0.050 = 1.0,	CO ₂ : 0.050 / 0.050 = 1.0, Zn: 0.10 / 0.050 = 2.0
		STEP 4 :	The numbers are all the whole numbers, so you can use them to write the balanced symbol equation	2ZnO + C → CO ₂ + 2Zn	
		Tip: if any	of the number aren't whole numbers,		
			If the numbers by the same amount so		
			all become whole numbers		
26	What is a solvent?	A liquid th	at dissolves a solute		
27	What is a solute?	The solid that is being dissolved			
28	What is a solution?	A mixture of a solute dissolved in a solvent			
29	What is concentration?	The amount of substance in a certain volume of a solution			
30	What is the formula for calculating	concentration (g/dm ³) = mass of solute (g)			
	concentration (g/dm ³)?	volume of solvent (dm ³)			
31T	What is percentage yield? (Triple only)	The percentage of theoretical yield actually obtained in a chemical reaction			
32T	What is the formula for calculating	% Yield = <u>Mass of product actually made (g)</u> × 100			
	percentage yield? (Triple only)	Maximum theoretical mass of product (g)			
33T	Why is it not possible to obtain the	the reaction may not go to completion because it is reversible			
	calculated theoretical yield in a reaction?	some of the product may be lost when it is separated from the reaction mixture			
	(Triple only)	some of the reactants may react in ways different to the expected reaction			
34T	What is atom economy? (Triple only)	A measure of the amount of starting materials that end up as useful products.			
35T	Why is it important for sustainable	Less waste made that needs to be disposed of			
	development and for economic reasons to	Resources used up less quickly			
	use reactions with high atom economy?	More profitable			
	(Triple only)				

36T	What is the formula for calculating atom	Atom economy = <u>Relative formula mass of desired product</u> × 100		
	economy? (Triple only)	relative formula mass of all reactants		
37T	How do you calculate atom economy? (Triple only)	STEP 1:	Identify the desired product	Hydrogen gas
	e.g.	STEP 2:	Work out the Mr of all the reactants	CH ₄ : 16, H ₂ O : 18 TOTAL Mr = 34
	calculate the atom economy of the following reaction to produce hydrogen gas	STEP 3:	Work out the total Mr of the desired product	3H ₂ = 6
	$CH_{4(g)} + H_2O_{(g)} \rightarrow CO_{(g)} + 3H_{2(g)}$	STEP 4:	Use formula to calculate the atom economy	(6 ÷ 34) × 100 = <u>17.6%</u>
38T	What is the formula for calculating	concentration (mol/dm ³) = <u>number of moles of solute (mol)</u>		
	concentration (mol/dm ³)? (Triple only)	volume of solvent (dm ³)		
39T	How many cm ³ are in 1 dm ³ ? (Triple only)	1 dm ³ = 1000cm ³		
40T	How can you convert cm ³ into dm ³ ? (Triple only)	Divide by 1000		
41T	What are the 6 steps for carrying out a titration? (Triple only)	 Use the pipette and pipette filler to add 25 cm³ of alkali (or acid) to a clean conical flask. Add a few drops of indicator and put the conical flask on a white tile (so you can see the colour of the indicator more easily). Fill the burette with acid (or alkali) and note the starting volume. Slowly add the acid from the burette to the alkali in the conical flask, swirling to mix. Stop adding the acid when the end-point is reached (the appropriate colour change in the indicator happens). Note the final volume reading. 		
		6. Repeat steps 1 to 5 until you get consistent readings		

42T	If the volumes of two solutions that react	STEP 1:	Convert all volumes to dm ³	30.0 cm ³ = 30.0 ÷ 1000 = 0.030 dm ³	
	completely are known and the concentration			25.0 cm ³ = 25.0 ÷ 1000 = 0.025 dm ³	
	of one solution is known, how can the				
	concentration of the other solution be	STEP 2:	Calculate the number of moles of the	0.100 mol/dm ³ x 0.025 dm ³ = 0.00250 moles of NaOH	
	calculated? (Triple only)		substance where the volume and concentration are known (moles =		
	e.g		conc. x volume)		
	A student started with 30.0cm ³ of sulfuric				
	acid (H ₂ SO ₄) of unknown concentration in a	STEP 3:	Use the reaction equation to work out	Two moles of sodium hydroxide reacts with one mole	
	flask. She found that it took an average of		how many moles of the 'unknown'	of sulfuric acid. So 0.00250 moles of NaOH must have	
	25.0cm ³ of 0.100 mol/dm ³ sodium hydroxide		stuff you must have had	reacted with 0.00250 \div 2 = 0.00125 moles of H ₂ SO ₄	
	(NaOH) to neutralise the sulfuric acid. Find				
	the concentration of the acid in mol/dm ³ . The				
	balanced symbol equation for the reaction is:	STEP 4:	Work out the concentration of the	$0.00125 \text{ mol} \div 0.030 \text{ dm}^3 = 0.04166666 \text{ mol/dm}^3$	
			'unknown' stuff (conc. = moles ÷	= 0.0417 mol/dm ³	
	$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$		volume)		
43T	What is a meniscus? (Triple only)	The curved upper surface of a liquid in a tube			
44T	What are concordant results? (Triple only)	The volume of three or more titres lie within 0.10cm ³ of each other			
45T	How do you calculate a mean? (Triple only)	Add up all the numbers, then divide by how many numbers there are			
46T	What volume does one mole of any gas	24 dm ³ (24000 cm ³)			
	occupy at 20°C? (Triple only)				
47T	At what temperature does one mole of any	20°C			
	gas occupy 24 dm ³ ? (Triple only)				
48T	What is the formula for calculating volume of	Volume o	of gas (dm ³) = mass of gas (g) x 24 dm ³	Volume of gas (dm ³) = moles of gas x 24 dm ³	
	gases? (Triple only)		M _r of gas		