MARK SCHEMES – Chemistry Unit 2 homework

~ · · ·		
Q1 (a	a) Kloses	1
	one electron	1
	(to) form a positive ion	1
	F gains one electron	1
	(to) form a negative ion	1
(b)	lattice / giant structure	
	allow many ions	1
	strong attraction	1
	between K ⁺ and F ⁻ ions / oppositely charged ions	
		1
	(so) a lot of energy is needed to overcome / break	
	allow strong bonds	1
Q2(a) intermolecular		1
(b)	sulfur	
		1
(c)	ions	1
	fixed in solid	
		1
	mobile in liquid	1
(d)	layers of atoms	
	allow ions	1
	slide over each other	
(c)	connor	1
(9)	ουρμ α ι	1

Q3 (a)

two shared pair of electrons all outer shells complete

- (b) gas
- Q4(a) carbon

allow C

(b)	(i)	(atoms are in) layers (that) can slide over each other	1
		because between the layers there are only weak forces	
		accept because there are no (covalent) bonds <u>between</u> the layers	
		accept Van der Waals forces between the layers	
		do not allow intermolecular bonds between the layers	
		if no other marks are awarded allow weak intermolecular forces for 1 mark	

- (ii) because each atom forms <u>four</u> (covalent) bonds or (diamond is

 a) giant (covalent) structure or lattice or macromolecular
 any reference to ionic / metallic bonding or
 intermolecular forces scores a maximum of 1 mark
 accept carbon forms a tetrahedral shape
 - (and) <u>covalent</u> bonds are strong accept <u>covalent</u> bonds need a lot of energy / difficult to break
- (iii) because graphite has delocalised electrons allow sea of electrons allow each carbon atom has one free electron

which can move <u>through the whole structure</u> (and carry the current / charge / electricity)

1

1 1

1

1

1

1

1