Mark schemes – Physics unit 1 homework

Q1.		
(a)	80 °C	1
	$\Delta E = 0.5 \times 3400 \times 80$	1
	ΔE = 136 000 (J)	
	an answer of 136 000 (J) scores 3 marks	1
(b)	energy is dissipated into the surroundings allow any correct description of wasted energy	1
(c)	put a lid on the pan allow any sensible practical suggestion eq add salt to the water	
		1
(d)	efficiency = 300/500	1
	efficiency = 0.6 an answer of 0.6 or 60% scores 2 marks allow efficiency = 60% an answer of 0.6 with a unit scores 1 mark an answer of 60 without a unit scores 1 mark	1
(e)	lower rate of energy transfer	1
	(so) potato soup will remain at a higher temperature	1 [9]
02		
(a)	kinetic energy = 0.5 × mass × (speed) ² $F = \frac{1}{2}mn^2$	
	allow 2 2 mv	1
(b)	$0.5 \times 9000 \times 30^2$	1
	4 050 000	1
	4050 (kJ) an answer of 4050 (kJ) scores 3 marks an answer of 4 050 000 scores 2 marks	

(c) efficiency =

useful output energy transfer total input energy transfer

(d)
$$0.80 = \frac{\text{useful output energy transfer}}{4050}$$

(useful output energy transfer =) 0.80×4050

= 3240 (kJ)

(e)

1

Level 2: Scientifically relevant features are identified; the way(s) in which they are similar/different is made clear and (where appropriate) the magnitude of the similarity/difference is noted.	3-4	
Level 1: Relevant features are identified and differences noted.		
No relevant content		
Indicative content		
advantages of both methods:		
both renewable sources of energy		
both have no fuel (cost)		
no carbon dioxide produced		
advantages of wind		
higher average power output		
advantages of hydroelectric		
constant / reliable power (output)		
lower (installation) cost		
disadvantages of wind		
higher (installation) cost		
variable / unreliable power output		
disadvantages of hydroelectric		
lower power output		

1

1

1

- (may be) noisy
- visual pollution

[12]

4

Q3

(a) Level 3 (5–6 marks):

A full, detailed and coherent plan covering all the major steps is provided, which outlines what needs to be measured to calculate specific heat capacity. The steps are set out

in a logical manner that could be followed by another person to calculate the specific heat capacity.

Level 2 (3-4 marks):

The substantive content of a plan is present but may be missing some steps. The plan

may not be in a completely logical sequence but leads towards the calculation of the specific heat capacity.

Level 1 (1–2 marks):

Simple statements relating to relevant apparatus or steps are made but they may not be

in a logical order. The plan would not allow another person to calculate specific heat capacity.

0 marks:

No relevant content.

Indicative content

- measure the mass of metal
- correct use of balance
- description of how work is done or energy transferred to metal eg electrical work, mechanical work (eg dropping lead shot)
 - how energy transfer or work done is measured

eg electrical using joulemeter, mechanical decrease in potential energy store of falling lead shot

 equate work done / energy transferred = increase in thermal energy store of the

metal

calculate specific heat capacity