Physics equations to memorise

Physics equations to memorise					
Exam	Word equation	Symbol equation	SI unit		
Paper 1	kinetic energy = $0.5 \times mass \times (speed)^2$	$E_k = \frac{1}{2} m v^2$	Kinetic energy = Joules (J) Mass = kilograms (kg) Speed = metres per second (m/s)		
Paper 1	gravitational potential energy = mass × gravitational field strength × height	$E_{p} = m g h$	E _p = Joules (J) Mass = kilograms (kg) g = Newtons per kilogram (N/kg) Height = metres (m)		
Paper 1	power = <u>energy transferred</u> time	P = E/t	Power = Watts (W) Energy = Joules (J) Time = seconds (s)		
Paper 1	power = <u>work done</u> time	P = W/t	Power = Watts (W) Work done = Joules (J) Time = seconds (s)		
Paper 1	efficiency = <u>useful output energy transfer</u> total input energy transfer				
Paper 1	efficiency = <u>useful power output</u> total power input				
Paper 1	charge flow = current × time	Q = 1 t	Charge flow = Coulombs (C) Current = Amperes (A) Time = seconds (s)		
Paper 1	potential difference = current × resistance	V = 1 R	Potential difference = Volts (V) Current = Amperes (A) Resistance = Ohms (Ω)		
Paper 1	power = potential difference × current	P = V I	Power = Watts (W) Potential difference = Volts (V) Current = Amperes (A)		
Paper 1	power = (current) ² × resistance	$P = l^2 R$	Power = Watts (W) Current = Amperes (A) Resistance = Ohms (Ω)		
Paper 1	energy transferred = power × time	<i>E</i> = <i>P t</i>	Energy = Joules (J) Power = Watts (W) Time = seconds (s)		

Physics equations to memorise

	Physics equations	to memorise	
Paper 1	energy transferred = charge flow × potential difference	E = Q V	Energy = Joules (J) Charge flow = Coulombs (C) Potential difference = Volts (V)
Paper 1	density = <u>mass</u> volume	ρ = m / V	Density = kilograms per metre cubed (kg/m ³) Mass = kilograms (kg) Volume = metres cubed (m ³)
Paper 2	weight = mass × gravitational field strength (g)	W = m g	Weight = Newtons (N) Mass = kilograms (kg) g = Newtons per kilogram (N/kg)
Paper 2	work done = force × distance (along the line of action of the force)	W = F s	Work done = Joules (J) Force = Newtons (N) Distance = metres (m)
Paper 2	force applied to a spring = spring constant × extension	F = k e	Force = Newtons (N) Spring constant = Newtons per metre (N/m) Extension = metres (m)
Paper 2 TRIPLE ONLY	moment of a force = force × distance (normal to direction of force)	M = F d	Moment = Newton-metres (Nm) Force = Newtons (N) Distance = metres (m)
Paper 2 TRIPLE ONLY	pressure = <u>force normal to a surface</u> area of that surface	p = F/A	Pressure = Pascals (Pa) Force = Newtons (N) Area = metres squared (m²)
Paper 2	distance travelled = speed × time	s = v t	Distance = metres (m) Speed = metres per second (m/s) Time = seconds (s)
Paper 2	acceleration = <u>change in velocity</u> time taken	$a = \Delta v/t$	Acceleration = metres per second squared (m/s ²) Velocity = metres per second (m/s) Time = seconds (s)
Paper 2	resultant force = mass × acceleration	F = m a	Force = Newtons (N) Mass = kilograms (kg) Acceleration = metres per second squared (m/s²)
Paper 2 - (HT)	momentum = mass × velocity	p = m v	Momentum = kilogram metres per second (kg m/s) Mass = kilograms (kg) Velocity = metres per second (m/s)
Paper 2	wave speed = frequency × wavelength	$v = f \lambda$	Wave speed = metres per second (m/s) Frequency = Hertz (Hz) Wavelength = metres (m)