

Section	Knowledge	Outcomes:	How students will demonstrate
Section	Code:		success:
1	S10.1.1 Structure of the atom	 SWBAT Identify the Rutherford (nuclear) model of an atom. Identify the locations of protons, neutrons, and electrons in the nuclear model. State that electrons can move between fixed energy levels within an atom. 	 Labelling a diagram with and matching properties to particles. Explain in an extended writing task what happens to electrons when they emit or absorb radiation.
2	S10.1.2 Mass number, atomic number and isotopes/RAM	 SWBAT Identify the mass and atomic number by using nuclear notation. Describe how isotopes are atoms of the same element with different mass numbers. 	 Determine the atomic number, mass number and number of neutrons of an atom using the periodic table Give the definition of isotopes. Use relative abundance figures to calculate the relative atomic mass of elements with non-integer RAMs
3	S10.1.3 Relative electrical charges of subatomic particles	SWBATName and give the relative charges and mass of the subatomic particles	 Complete and extended writing task that names the subatomic particles, giving their location, mass and charge in relative units.
4	S10.1.4 Electronic structure	 SWBAT Write the standard electronic configuration notation from a diagram for the first 20 elements. Explain why elements in the same group react in a similar way. 	 Use the periodic table of elements to give the electron structure and draw the electrons shells of any of the first 20 elements. State the link between group and electrons in outer shells. Linking that to their reactions.
5	S10.1.5 The Periodic Table	 SWBAT Use the Periodic table to find atomic number and mass number data and use it to determine the number of each sub-atomic particle in any given form. Recognise and describe patterns in sub-atomic particles of elements listed in the Periodic Table. Explain why we can be confident that there are no missing elements in the first 10 elements of the Periodic Table. Describe the development of the periodic table by mendelev et al. 	 Link periods an d group numbers to number of shells and electrons in outer shells respectively Describe Mendelev's and Newlands models of the periodic table. State how they are different to current table Explain why Mendelev's model was better
6	S10.1.6 The development of the model of the atom	 SWBAT Identify the Rutherford (nuclear) model of an atom. Identify the locations of protons, neutrons, and electrons in the nuclear model. State that electrons can move between fixed energy levels within an atom. Compare the plum pudding model, Rutherford model, and Bohr model of the atom in terms of the evidence for each model. Explain how Rutherford and Marsden's experiment caused a rejection of the plum pudding model. Describe how the initial evidence for the nuclear model was processed and how the model came to be accepted. 	 Describe both models of the atom in terms of distribution of mass, charge and matter. Describe the experiment carried out by Rutherford Say how the two conclusions from the Alpha scattering experiment disproved PPM Say how they supported NM Combine all above into an extended writing response.

Section	Knowledge	Outcomes:	How students will demonstrate
	Code:		success:
7	S10.1.7 Transition Metals	 SWBAT Describe the difference between transition metals and Group 1 in melting points, densities, strength, hardness and reactivity with oxygen, water and halogens. Exemplify these general properties by reference to Cr, Mn, Fe, Co, Ni, Cu. 	 Use knowledge and data to make a comparison between properties of different groups and transition metals. Link properties of transition metals to their uses
8	S10.1.8 Radioactive decay and nuclear radiation	 SWBAT Name the three types of nuclear radiation. Name the three sub-atomic particles found in an atom (proton, neutron, and electron). Describe the relative penetrating powers of the three types of nuclear radiation. Describe in detail the decay of an unstable nucleus. Explain the similarities and differences between nuclear radiation and visible light. Explain why particles are ejected from the nucleus during nuclear decay. 	 Give the names and properties and source of the three types of ionising radiations in extended writing.
9	S10.1.9 Nuclear equations	 SWBAT Describe the changes in the nucleus that occur during nuclear decay. Write full decay equations, for example, nuclear decays. 	 Recall the general equations for the three types of radiations. Use the equations to predict the products formed from the different radiations
10	S10.1.10 Half-lives and the random nature of radioactive decay	 SWBAT State that the activity of a radioactive sample will fall over time. Define half-life in simple terms such as 'the time it takes for half of the material to decay'. Find the half-life of a substance from a graph of count rate (or nuclei remaining) against time. Compare a physical model of decay with the decay of nuclei, noting the limitations of the model. 	 Draw a graph from secondary data and use this to deduce half life graphically. Use data provided to calculate half life from activities over time or activity over time from half life without graphs.
11	S10.1.11 Radioactive contamination	SWBAT • Define contamination and irradiation Describe some safety precautions used when dealing with radioactive materials. • Describe how a Geiger counter can be used to detect radiation. • Identify natural and man-made sources of background radiation.	 Extended writing – compare and contrast contamination and irradiation.
12	S10.1.12 Background radiation	SWBAT Define background radiation and explain its sources. 	 Label a pie chart showing source of radiation Explain in writing that man made forms of background radiation contribute a small part of the whole.

Section	Knowledge Code:	Outcomes:	How students will demonstrate success:
13	S10.1.13 Uses of nuclear radiation	 SWBAT Outline how the age of organic material can be determined by using radioactive dating. Calculate the changes in count rate or nuclei remaining by using an exponential decay function. Describe the use of radioactive implants and the hazards associated with the technique. Discuss the factors that need to be taken into account when selecting a medical tracer for a diagnostic test. Explain how a medical tracer is used including the function of a gamma camera. 	 Describe the different uses of radiation in written form. Justify the choice of emitter for the different uses referring to the ALARA principle.
14	S10.1.14 Nuclear Fission	 SWBAT Explain how a steady-state induced fission reaction can be maintained. Explain the differences between naturally occurring isotopes and enriched nuclear fuels. Explain the operation of a nuclear fission reactor, including the choices of appropriate materials. Discuss the risks and benefits of nuclear power compared to other methods of electricity generation. Describe and explain the safety precautions that need to take place after a large nuclear accident. Evaluate in detail a variety of storage or disposal solutions for nuclear waste. 	 Draw/label a fission diagram. Define and describe the process. Explain the role of the neutron in this process Extended writing: Compare the use of nuclear fission with another method of generating electricity and evaluate.
15	S10.1.15 Nuclear fusion	 SWBAT Explain why it is difficult to carry out controlled nuclear fusion on Earth. Construct a variety of nuclear equations showing nuclear fusion. Compare the operation of a nuclear fission reactor and a nuclear fusion reactor. 	 Define it Draw a diagram Explain why it's hard, why is it easier in the sun/stars. Link to life cycle of stars

Section	Knowledge Code:	Outcomes:	How students will demonstrate success:
23	S10.1.23 Chromosomes, mitosis and the cell cycle	 SWBAT Describe how DNA is found Describe the stages of the cell cycle, including mitosis Recognise and describe situations where mitosis is occurring 	 Give the size order of DNA/Chromosomes/cells etc. Explain the stages of the cell cycles in writing,
24	S10.1.24 Stem cells	 SWBAT Define a stem cell Describe the function of stem cells in embryos, adult animals and meristems (plants) Explain how stem cells can be used as treatment for some conditions such as diabetes and paralysis Evaluate the practical risks and benefits, as well as social and ethical issues, of the use of stem cells in medical research and treatments. 	• As outcomes
25	S10.1.25 Diffusion	 SWBAT Define diffusion Recognise, draw and interpret diagrams that model diffusion. Explain how different factors affect the rate of diffusion explain the need for exchange surfaces and a transport system in multicellular organisms 	 Give the definition of diffusion and state factors that affect its rate. Link these factors to the properties of specialised cells in places like like lungs or intestines.
26	S10.1.26 Osmosis	 SWBAT Define osmosis Recognise, draw and interpret diagrams that model osmosis. Apply knowledge of osmosis to unfamiliar situations and make predictions. 	 Give the definition of osmosis. Identify which way osmosis is occurring in a range of diagrams/situations. Explain what is happening in writing in a range of contexts i.e. visking tubing with different solutions in different solns.
27	S10.1.27 Active transport	 SWBAT Define active transport Describe how substances are transported into and out of cells by diffusion, osmosis and active transport Explain the differences between the three processes 	 Define Explain why energy is required. Link the energy requirement to the number of mitochondria in cells in areas that carry out a lot of AT.